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a reprint from Applied Optics

Angular intensity correlations in the double
passage of waves through a random phase screen

Hector M. Escamilla, Eugenio R. Mndez, and David F. Hotz

The problem of light scattering in folded-path or double-passage configurations is studied theoretically.
Assuming as the random medium a deep phase screen that introduces Gausz:an diztributed phase
fluctuations, we study the motion of the speckle as the source is moved. Some attention is also given to
the phenomenon of backscattering enhancement. Our analysis is based on a novel expression for the
complex amplitude that has a simple physical interpretation. For simplicity, only the one-dimensional
case is considered, but an extension of the analysis to two-dimensional screens is not difficult.

Using the factorization properties of the moments of a complex Gaussian process, we are able to derive
analytical expressions for the mean intensity and the intensity correlation of the backscattered
radiation. We find that, in most cases, the speckle field decorrelates rapidly as one moves the angle of
incidence and shifts toward the direction of specular reflection with a rate of motion that is different from
that of the angle of incidence. We also find conditions under which, when the angle of incidence is
modified, the speckle pattern produced in the region of observation tracks the backscattering direction.

Key words: Enhanced backscattering, do le-passage analysis, speckle motion, multiple scattering,
random phase screen.

1. Introduction intensity fluctuations that describes the motion of the

The problem of light scattering in folded-path or speckle as the source is moved, but some attention is
double-passage configurations has been studied in the also given to the angular distribution of the mean
last three decades by several authors.1-6 The system intensity around the backscattering direction. Our
is known to exhibit the phenomenon of backscatter- analysis is based on an expression for the scattered
ing enhancement. This phenomenon can be ex- complex amplitude that can be obtained by manipulat-
plained by considering the coherent addition of waves ing the diffraction integrals that describe the propaga-
that follow identical paths in opposite directions on tion to the observation point. Assuming that a
interaction with the random medium. Most of these Gaussian speckle pattern" is formed in the plane of
studies have dealt with the propagation through an the mirror and that the speckle grain on the mirror is
extended random medium, and Ref. 6 provides sev- much smaller than the mirror aperture, we derive
eral references for this case. More recently, the exact (within the model) analytical expressions for
scattering system consisting of a plane mirror in the the mean intensity and the intensity correlation of
diffraction field of a deep random phase screen has the backscattered radiation by using the factorization
also been studied by several authors.4,5, 7-10  To our properties of the moments of a complex Gaussian
knowledge, however, only the mean intensity and the process. In this paper we deal with a one-dimen-
first-order spatial coherence function of the scattered sional random phase screen that introduces smoothly
light have been studied. varying Gaussian-distributed phase fluctuations, but

In this paper we study theoretically the deep phase th calculations can be easily extended to the case of
screen double-passage configuration [see Fig. 1(a)] two-dimensional phase screens.
with particular interest in the correlation of the We find that, under certain circumstances, when

the angle of incidence is modified, the speckle pattern
produced in the region of observation tracks the

The authors are with the Divisi6n de Fisica Aplicada, Centro de backscattering direction. This is in contrast with
Investigaci6n Cientifica y de Educaci6n Superior de Ensenada, the wel'-known laws of speckle motion with random
Apartado Postal 2732, 22800 Ensenada, B. C. Mexico.

Received 29 May 1992. surfacesl,13 and with the type of motion found for
0003-6935/93/152734-10$05.00/0. volume scatterers.14-17 Another interesting feature
o 1993 Optical Society of America. present in our calculations is that, in some cases, the
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(a) nX, X approximation. We have

A(x, 0,)

- -L ir-7o KfAx l)exp i$ x1)]exp [- (x, )d

phase screen T
where 4)(x1 ) is the random phase introduced by the
screen, d is the distance from the screen to the

(b) {x, Ix x2  mirror, and K, is anothcr complex constant. The
,) aperture function in the mirror plane is given by

- ,-z T,(x) = exp - , (3)

T T where Wm is the aperture radius at the 1 e point.

phase screen phase screen The complex amplitude A(x 2 ), which is incident upon
< d>< , > the second phase screen located in the plane x2 , can be

Fig. 1. Scattering geometry: (a) backscattering configuration, written as
(b) equivalent unfolded geometry with two identical screens.

A(x 2) = K2 A(x, 0i)T0(x)exp -(x2 -X)
2 - dx, (4)

speckle pattern is nearly symmetric about the back- where K2 is a complex constant, and we have again
scattering direction. mh er e of ts a app rox imatint, an obse r-

Using these results, we propose a modification of made use of the Fresnel approximation. At an obser-
the original scattering geometry. With this new vation point in the far field of the second screen, the
configuration, the backscattering enhancement, the scattered complex amplitude can be written as
symmetry of the speckle pattern, and the tracking of /
the speckle pattern of the backscattering direction A(0,, 03) = K A(x 2)exp- X2

are present under less restrictive conditions. T

x exp[id4(x 2))exp(-ikx2 sin O,)dx 2, (5)
2. Formulation of the Problem
The double-passage configuration is shown in Fig. where 0, denotes the direction of observation and K isThe oube-pssae cnfiuraton s sownin ig. another complex constant; we have included a Gaus-
1(a). A plane mirror lies in the Fresnel region of the anoaperture consofnradiushWv incthe a ofuth

phase screen. Finite apertures are located in the sian aperture function of radius W2 in the plane of the

plane of the mirror and of the screen. The angles of second screen. From Eqs. (3)-(5) we may write,

incidence 0i and of scattering 0, are taken as positive after interchanging the orders of integration,
in the sense indicated by the arrows in the figure.
It is clear that the unfolded geometry of Fig. 1(b) is A(0i, 0,) = K exp - A(x, 0)A(x, O,)dx, (6)
equivalent to that shown in Fig. 1(a). The aperture
W1 refers to the width of the incoming beam.

where

A. Scattered Complex Amplitude ' x 2
2 \

With reference to Fig. 1(b), we see that a nearly A(x,W2) =K2 exp2- exp11Nx 2)]
collimated monochromatic Gaussian beam of l/e T/

amplitude radius W1 is incident upon the first phase [ik 1 si(
screen, which is located on the plane x1 , at an angle 0i x exp [(X 2 - x)2  p(-ikx2sin)dx2 (7)
with respect to the z axis. This incident complex

amplitude A,(xj) may we written as The quantity A(x, 0,) is the complex amplitude that
a point source located at the observation point in the

K p( sn / far field would produce in the plane of the mirror.
Ai(xU) = Ko exp(-ikxl sin 0j)exp - 12J' (1) Substitution of Eq. (1) into Eq. (2) shows that, except

for an irrelevant constant factor, Eqs. (2) and (7) have
where K0 is a complex constant and k = 2Tr/X, X being exactly the same form. Our approach is based on
the wavelength of the incident light. The complex Eq. (6) and a few additional assumptions that are
amplitude of the scattered light in the plane of the described in Subsection 2.B. Equation (6) has a
mirror, which is denoted by A(x, 0j), can be found by simple physical interpretation: mathematically it is
using the Kirchhoff diffraction theory in the Fresnel the product of two speckle patterns integrated over

20 May 1993 / Vol. 32, No. 15 / APPLIED OPTICS 2735



the mirror aperture. This expression has some close we can write
parallels with the equation describing image forma-
tion in confocal scanning microscopy. Is CA(,, 0; Oi', CA')=C(, 0s; 0i, 0,') + C2(,, k; 0,', 8,'),

(12)
B. Correlation of the Scattered Intensity wh
At this point it is necessary to introduce a statistical ere
model for the phase fluctuations d4(x). We assume C,(, 0' 6')
that 41(x) is a stationary zero-mean Gaussian random
process with a Gaussian correlation coefficient JKJ ( x 2+ x,
p(x - x'); Iglj W 2 )(A(xO,)A(x',,)

(dx)(' I x -x' I) ,

p(x - x') = O 2 = exp x - 2', (8) x (A(x,O,)A*(x',0,'))dxdx', (13)
2 E2and

where a2 is the variance of the random phase fluctua- C20(6 0; 6i', Os')
tions and k is the characteristic correlaton length of
the process. fl ( X+x2) ,

Now, for a deep phase screen, 02 >> 1, and if, in IK12 - Oi)A*(x 0,'))
addition, W12 >> ý2 and (kE 2/2d) << 1, then the
complex amplitude A(x, 0j) corresponds to that of a x A Q)A*(x', 0,')ýdxdx', (14)
fully developed speckle pattern.4,11 That is, A(x, 6,)
is a zero-mean circular complex Gaussian random The last two expressions involve only the calcula-
variable (CCGRV)." The condition (kt 2/2d) << 1 tion of second-order moments or correlations of the
ensures that the mirror is far from the focusing field amplitude, and are much simpler to calculate
region of the screen where strong departures from than the fourth-order moment of Eq. (11). The
Gaussian statistics take place.' 9 Likewise, if W2 2 >> amplitude correlations in Eqs. (13) and (14) were
t2, A(x, 0) is also a zero-mean CCGRV. In addition, evaluated in the limit o2 >> 1 by using a steepest-
if Wm is much greater than the speckle size in the descents method (see Appendix A). Using these
plane of the mirror, the scattered complex amplitude results, we can obtain analytical expressions for
A(0j, 0.) is also a zero-mean CCGRV. CI(A,, 06; 0i', 0.') and C2(06, 0,; 0j', 0,') without further

Consider now the intensity I(06, 0,) at detection approximations. The result involves some rather
angle 0,, which is due to an incoming beam incident at long algebraic expressions that are difficult to reduce
angle 0,, and the intensity I(0,', 0,') at detection angle and thus are given in Appendix A. A simple formula
0,', which is due to an incoming beam at incident for a particular case is given in Section 3.
angle 6j'. With the statements made above regard- The mean intensity is then calculated from
ing the statistics of A(0,, 0,), the intensity correlation
Cj(0e, 0,; 0j', 0,') = (1(0,, 0,)I(o', 06,')) can be written (l(0i, 0.)) = CA(A1 , 0.; O,, 0,), (15)
as20: while the normalized intensity correlation -y(0, 0,;

C,(0i, 6'; 0,', 06') 0j', 0,')is given by

= (1(0i, O,)(l(6A', 6')) + I CAA6, 0s; Oi',~ (9) -y,(0,, 0.;O0', 0,') 1 + I YA( 0,,; 0,;1, 0,') 12

where + I CA(Ol, 0,; 6,', 0,')12

CA(O,, 0,; 0j', 0,') = (A(0, 0,)A*(0,', 0,')). (10) (16)

Using Eq. (6), we see that the problem reduces to the It is pertinent to mention that, recently, a compact
calculation of the function: formula for the mean intensity produced by the

CA(O, 0.,; 0i', 0,') scattering of a Gaussian beam by the double passage
through a deep phase screen has been derived thatfK frr( x2 + x',2  also uses the factorization properties of the moments

=IKI2 j exp Win 2 ) of a Gaussian random process.' 0

x (A(x, 0,)A(x, O)A*(x~ 0,i)A*(x, ,3,'))dxdx'. (11) 3. ResultsWe now turn our attention to the study of the
Recalling again the statistical considerations made behavior of the angular distribution of the mean

above, we also find that the fourth-order moment in intensity around the backscattering direction. Fig-
the integrand of Eq. (11) can be expressed as a sum of ure 2 shows the evolution of the enhancement factor
products of first-order correlation functions.20  Thus Ef as the distance d from the phase screen to the
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1.0

a~0.5

0 00

0.0
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00
0 5 10 15 Scattering Angle (mrad)
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Fig. 2. Enhancement factor Ef as a function of the normalized
distance d L between the mirror and the phase screen. For the
numerical calculations W2 and W,, were assumed to be infinite, L =
6.206 mm (see text) and 0, = 5 mrad.

2.0
mirror increases for the case of infinite apertures at
the mirror and the second screen. We define the
enhancement factor Ef as the ratio of the mean 1. 1 (5
intensity in the backscattering direction to the mean
background intensity. In Fig. 2, the circles repre-
sent the values obtained from the evaluation of the S 1.0
general formulas given in Appendix A, while the solid

Zcurve is a plot of the expression r 0.5

1 -
2'=1 (17) oEf=1+[I + (d/L)2]1 2 (1)0.0 . . . ' . .

0 5 10

where the normalization distance L is given by Scattering Angle (mrad)

kkWl Fig. 3. Angular distribution of mean intensity as a function of the
L = (18) scattering angle 8, for the cases of reduced apertures at the mirror

2y or phase screen. The dots indicate the direction of incidence 0, = 5

mrad. Hered = 6.5L and(a) W, = W1 2 and W2 infinite, b) W2 =
For the numerical calculations presented we have set W, and W. infinite.
X = 0.6328 gim, a = 8 rad, k = 5.0 jLm, and W, = 2
mm. So the parameter L was fixed at the value L =
6.206 mm. Equation (17) can be derived from the for the relative enhancement because, after reflec-
results given in Ref. 4. The agreement between the tion, the illuminated region of the second screen
two plots is excellent. It is seen that the height of almost coincides with the area illuminated in the first
the peak diminishes as the screen to the mirror passage. Figure 3(b), on the other hand, shows that
distance increases. This is because, as this distance the maximum theoretical enhancement factor of 2
increases, more of the scattered light reflected by the (see Refs. 21-23) is achieved when the apertures at
mirror onto the screen lies outside the region illumi- the two screens have equal sizes, as this maximizes
nated in the first passage. It is only the region of the proportion of reversible paths. The mirror, in
overlap that contributes to the backscattering en- this case, has been assumed to be infinite.
hancement. The light reflected outside this region In Fig. 4 we study the motion of the speckle pattern
contributes to only the background scattered intensity, as the direction of the incoming beam changes. We

The relative enhancement can also be increased by proceed by first fixing the original angles of incidence
reducing the area of the screen illuminated in the 0i and detection 0,. We then choose a new angle of
second passage by placing a physical aperture at incidence 0,' and find the maximum value of the
either the mirror or at the screen. This is illustrated correlation -y(0,, Os; 0,', 0,') as we scan the second
in Fig. 3 for a normalized distance d/L = 6.5, for angle of observation 0,'. In these figures, the verti-
which expression (17) predicts a small enhancement cal dashed-dotted line indicates the original direction
(see Fig. 2). In Fig. 3(a) the aperture radius of the of observation 0, while the dotted line indicates the
mirror has been set to one half of the radius of the original direction of incidence 0, Figure 4(a) is a plot
incoming Gaussian beam. A high value is obtained of the maximum value of the intensity correlation

20 May 1993 / Vol. 32, No. 15 / APPLIED OPTICS 2737



2 0 the angle of scattering 0,' plotted as a function of the
angle of incidence 0,'. It can be seen from Fig. 4(a)

(a) that, for the distance d = 6.5 L employed in the
figure, the full width of the correlation envelope, as a
function of the scattering angle 0,', equals approxi-

1.0 mately 2 V.rad. This width corresponds to an inter-
val of angles of incidence 0,' of approximately 3 mrad,
as can be seen from the curve plotted in Fig. 4(b).

0 oThis indicates that, in the situation considered, the
speckle pattern is practically static, and decorrelates
as the angle of incidence is changed. The solid curve0.0

-1.005 -1.000 -0.995 in Fig. 4(b) represents the mean intensity for 0,' = 0
mrad (which corresponds to the original angle of

Scattering Angle (mrad) incidence 0,) plotted as a function of the angle of
incidence 0,'. Invoking reciprocity arguments we
can see that the same curve would be obtained by
setting 0, = 0 mrad and plotting JI(0,, 0,)) as a function
of 0,. The solid curve in Fig. 4(b) represents, then,
the backscattering enhancement peak, and it is re-
markable that the two curves plotted in this figure

2.0 are practically the same. A similar result holds for
(b'~ scattering from dense media, whjer-' it has been

shown that the shape of the envelope ot the ,,orrela-2 1.5
Stion is equal to the square of the backscattering

enhancement peak. 24 We also mention that the situ-
1.0 - ation shown in Fig. 4(b) does not always hold. For

.0 instance, if the mirror is moved closer to the phase
screen, one eventually reaches a point beyond which

S0.5 the shape of the envelope correlation and that of the
Q backscattering peak are different.

0__0 Figure 5 shows two aspects of the behavior of the
-0.5 0.0 0.5 intensity correlation function as the direction of

incidence changes from 0, to 0,'. The geometry of the
Incidence Angle (mrad) arrangement is the same as in Fig. 4, but we have now

Fig. 4. Envelopes of the intensity correlation functions. The set the distance d = 0.8 L. Also, as in Fig. 4, the
dashed-dotted vertical line in (a) indicates the original direction of vertical dashed-dotted line in the upper half of these
observation, while the dotted line in (b) indicates the original figures indicates the original direction of observation
direction of incidence. Here d = 6.5 L, W1 = W2, W. is infinite, 0, while the dotted lines indicate the original direc-
0, = 0 mrad and 0. = -1 mrad. (a) Maximum values of the tionofincidenceS0. The long-dashed vertical lines in
intensity correlation function as a function of the scattering angle
0,', ib) maximum values of the intensity correlation function as a the bottom halves of the figures indicate the new
function of the angle of incidence 0,' (circles) and angular distribu- direction of incidence 0j', while the solid-vertical lines
tion of mean intensity with 0,' = 0 mrad as a function of the angle indicate the new direction of observation 0,' for which
of incidence 8,' (solid curve). maximum correlation is achieved. In Fig. 5(a), the

thick solid curve corresponds to the intensity correla-
tion function, while the thin curve shows the enve-

function as a function of the angle of observation 0,' lope of the intensity correlation function. For the
at which the maximum occurs for each new angle of value of d/L employed in Fig. 5(a), the envelope is
incidence 0j'; the curve represents, then, the intensity much wider than that in Fig. 4(a). We also see from
correlation envelope. It should be pointed out, how- Fig. 5(a) that, as the direction of incidence changes
ever, that, in general, the ratio of the angular shift of from 0, = 0.0 mrad to 0,' = 0.15 mrad, the peak of the
the speckle pattern to the angular shift in the angle of intensity correlation function, and thus the speckle
incidence is not equal to 1. This ratio depends on the pattern, moves in the direction of the specular reflec-
geometry and, in particular, it depends on the dis- tion from the original angle of observation 0, = -1
tance d. To illustrate the fact that the speckle does mrad to the position 0,' = - 1.04 mrad. In Fig. 5(b),
not move at the same rate as the angle of incidence, the original directions of incidence and observation
we show in Fig. 4(b) a plot of the correlation envelope are, respectively, 0, = 0.0 mrad and 0, = - 1.0 mrad.
shown in Fig. 4(a) in terms of the direction of It can be seen that, when the new direction of
incidence 0j'. The correlation envelope shown in incidence 0j' coincides with the original direction of
Fig. 4(b) then represents (for given angles 0j, 0,, and observation 0,, the peak of the intensity correlation
0j') the maximum correlation obtained by scanning function appears at the original direction of incidence

2738 APPLIED OPTICS / Vol. 32, No. 15 / 20 May 1993
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Scattering Angle (mrad) Scattering Angle (mrad)

Fig. 5. Shift of the intensity correlation peak with a change in the Fig. 6. Intensity correlation functions as functions of the scatter-
angle of incidence. The abscissas correspond to the scattering ing angle 8,' for a small mirror aperture. The vertical lines have
angle s,'. The dashed-dotted vertical line indicates the original the same meaning as in Fig. 5. Here d = L, W, = 0.025 W1, W2 is
direction of observation, while the dots indicate the original infinite, 8i = 0 mrad, and 0, = - 1 mrad. (a) Intensity correlation
direction of incidence. The long-dashed vertical line indicates the for 9j' = 0, (spatial autocorrelation), (b) intensity correlation
new direction of incidence while the solid vertical line indicates the function for V,' = 1.0 mrad.
angle of observation for which maximum correlation occurs.
Here d = 0.8 L, W, = W2, Wm is infinite, 0i = 0 mrad, and 8. = - 1
mrad. (a) Intensity correlation function for 0j' = 0.15 mrad (thick direction. This is because [with reference to Fig.
curvel and envelope of the intensity correlation function (thin 1(b)] the light scattered from the first screen that
curve). The maximum correlation occurs at 0, = -1.04 mrad. reaches the second screen goes through a small
(b) Intensity correlation function for 0i' = 0,. aperture on the axis of the system so that an inverted

image of the area illuminated on the first screen is
projected onto the second. Figure 6(b) shows that

0i. So, when source and detector are interchanged, when the incident direction changes from 8i = 0 to
the corresponding intensities are perfectly correlated. Oi' = 1 mrad, the correlation peaks move in a direc-
This result shows that the f&rmulas derived in Appen- tion opposite to that of the specular direction and at
dix A obey reciprocity. This kind of correlation was the same rate as the incident direction. That is, in
recently discussed for volume scatterers and has been this case, the speckle pattern tracks the backscatter-
termed the "time-reversed memory effect." 17  ing direction.

In Fig. 6 we consider the case of a small aperture at These striking results are due to the fact that, for
the mirror, much smaller than the cross section of the the complex amplitudes A(x, 0i) and A(x, 0,) [see Eq.
incoming beam. For these figures we assumed an (6)], the phase curvatures within the mirror aperture
infinitely large aperture at the second screen. Fig- are negligible. This suggests a modification of the
ure 6(a) shows the spatial intensity autocorrelation scattering geometery that will produce these effects
function. It can be seen that the speckle pattern is under less restrictive conditions. The new geometry
nearly symmetrical with respect to the backscattering is shown in Fig. 7. The simple formula referred to in

20 May 1993 / Vol. 32, No. 15 / APPUED OPTICS 2739



X 1.2 x dicted by this equation is given by

0 1. d xj ýe 2 ý, p (sinO0, +sinO0,)'
Fig7.di I - (I(0,, 0•)) = exp{- 2•%-- K 2 +:W (snm +2 )

TM m + (sin Oi - sin 0 -,)2

phase screen 2x + exp- (sin 0, - sin 0,12

Fig. 7. Double-passage configuration with the phase screen at the
center of curvature of a spherical mirror, which predicts a broad envelope with a narrow peak

(width p,) in the backscattering direction (0, = 0,).
Figure 8 corresponds to the geometry depicted in

Fig. 7, in which the phase screen is at the center of
Subsection 2.B was derived for the case W, = W2 = W curvature of the spherical mirror. Figure 8(a) shows
and for this specialized geometry, including a spheri- the behavior of the mean intensity. It is seen that
cal mirror, with an aperture of radius Wn, situated in the relative value of the backscattering enhancement
the far field of the screen. The radius of curvature of reaches a value of 2. The reason for this is that, in
the mirror is d and is equal to the distance from the the present case, an image of the region of the screen
screen to the mirror.

It is found that up to a constant factor, the 2.0
amplitude correlation is given by the expression

_Ya(O. 0s; Oi', 0,') 1.5

i (O1( + 0o+)2 (0,- +o-0-)21=-- - /-- 1.0
exp 1.0

8L pmr2 + INe2 8 Wm2

1 (0,1 - 94)2 1(0(- - 0..-)2] 0.5
Xexp 8 4e2  

-W52 J . (a)

8 l( ,-- ) 1 (0- -0+)211 0.0

+ exp 4 W 2  , (19) 0 5 10

Scattering Angle (mrad)

where

0j+ = sin Oi + sin 06', (20)

0.- = sin Oi - sin 0,', (21)

0,+ = sin 0, + sin 0,', (22) 2.0

0,- = sin 0, - sin 0,', (23) 0

2jF 1, (24) o .

~ 01.0

2a'
(25) o0.5

! Qj_=--> ,(b)

IW .•j= (26) 0.0 5 0

These last three quantities represent, respectively, Scattering Angle (mrad)

the angular widths of the speckle, of the speckle Fig. 8. Mean intensity and intensity correlation for the geometry
and of the mirror. To derive expression shown in Fig. 7. The vertical lines have the same meaning as inenvelope, Fig. 5. The relevant parameters are d = 80.0 L, Wm = 5 W1, W2 is

(19) we assumed that Wp,, 'Pm >> Ps. infinite, and Oi = 5 mrad. (a) Angular distribution of mean
Also, it is straightforward to show that, with intensity as a function of 0,, (b) intensity correlation plotted as a

approximations consistent with those employed in function of the scattering angle 0,', with 0, = 2 mrad and 09' = 6
the derivation of Eq. (19), the mean intensity pre- mrad.
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illuminated by the incoming beam is formed on the Appendix A
screen by the mirror. This image is inverted and is Apart from some constant factors, the amplitude
of unit magnification. The intensity correlation func- correlations appearing in Eqs. (13) and (14) are of the
tion in Fig. 8(b) shows the same features observed in general form
Fig. 6. The autocorrelation function shows two
peaks, indicating the symmetry of the speckle pattern (A(x, O)A*(x', 0'))
, Ith respect to the backscattering direction. Also, AepF 2\1

as the angle of incidence of the incoming beam is f expj - + -- (exi(xP" -i4Axjh
changed, the speckle pattern tracks the backscatter- j W12  

W 2

ing direction and not the specular direction, as would

be the case with a single-scattering rough surface. Jik [

These features can be explained from Eq. (19): The X exp12[(x, - x)2 
- (xd - x)2]

term (0,- - 0,-) in this equation is the one responsible
for the tracking of the backscattering direction, as it x expt -ik(x, sin 0 - x, sin 0')]dx,dx,. (Al)
predicts a peak when sin 0,' = sin 0j' + (sin 0, - The steepest-descent method 1 0 2 5 that we employed
sin 9j). On the other hand, the term (0,+ - 0.+) is for the calculation of these expressions basically
responsible for the symmetry of the speckle pattern
about the backscattering direction (i.e., 0,' = 0,'), as it consists of making the approximation
predicts a peak when sin 0,' = sin 0,' - (sin 0, - (exp[i,ý(x)]exp[-i•(x')j)
sin 0.).

4. Summary and Conclusi1ons = expf-a2[1 -p(x -x')])=exp( 92 kx-'2) (A2)
We have studied the scattering of light resulting from
double passage through a deep random phase screen in the evaluation of the amplitude correlations given
for an incoming Gaussian beam. Our analysis is for by Eq. (A. 1). Using these results, we find that Eq.
a one-dimensional random phase screen but the (13) gives
extension to two dimensions is straightforward.
Assuming that the complex amplitude of the speckle IT34d2 1
formed on the mirror follows Gaussian statistics, and COl(, 0.; 0,', 0.') = IK12 k2  (A1A2R)1 2 exp(,X - B),
that the speckle grain on the mirror is much smaller
than the mirror aperture, we have derived formulas (A3)
for the mean intensity of the backscattered light and
for the correlation of the intensities for different where
directions of incidence and observation. Using the
factorization properties of the moments of a complex k2 1& 02( 1 + \
Gaussian process, we have derived exact (within the X 4 - jZ•2 +2-I- + E2+ Z* , (A4)
model) analytical expressions for these two quantities.
The formulas so obtained are long and difficult to k2 1/ 0,2

interpret but we have studied a variety of double- B -_ z, sin2 0, + z* sin2 0,' - 2 - sin 0, sin 0,'
passage configurations from the numerical evalua-

tion of thesewe. - ssions. kzP 1 [ 2 0, o.

We have studied the backscattering enhancement +-- Z2sin + Z2*sin 2 - si e, sin ,

factor as well as the motion of the speckle pattern as /

the angle of incidence is changed. We have found (A5)
that, in general, the rate of change in the position of 04A 1 1+ 2
the speckle pattern is not the same as that of the R= [Z[ - - (A6)
angle of incidence. In normal circumstances, the
speckle moves in the direction of the specular reflec- 4
tion at a rate slower than that of the incident beam A, =IzI1 2 (A7)
and decorrelates with an envelope described approxi-
mately by the shape of the backscattering enhance- U4

ment peak. Conditions have also been found under A2 = z2 -- (A8)
which the speckle pattern is symmetric about the C4

backscattering direction and tracks the backscatter-
ing direction as the source is moved. The conditions with
for the observation of this effect are, however, fairly
restrictive. The new geometry proposed, with a I 1(s 0 -

spherical mirror, exhibits enhanced backscattering, A t2\zlsi 0- 5in 0

the symmetry of the speckle pattern, and the tracking
of the backscattering direction under less restrictive i( n o )
conditions. + • z2sinO0 -- sin05 ' , (A9)
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1 ( )2  The expressions corresponding to the geometry
= zj* sin 0,' - sin 0, depicted in Fig. 7 are obtained by dropping the

imaginary terms inside parentheses in Eqs. (A11) and

I i y2 I A21). Equation 19) was obtained by dropping, in
+ - zz* sin 0,' - - sin 0j , (A10) addition, the imaginary terms in Eqs. A12ý and ýA13,

A2 k2 /and by putting W, = W2 = W.
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